This is a repository copy of *Emulsion stabilization by tomato seed protein isolate: Influence of pH, ionic strength and thermal treatment.*

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/94603/

Version: Supplemental Material

Article:

https://doi.org/10.1016/j.foodhyd.2016.01.014

© 2015, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/

Reuse
Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher's website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/
Figure S1.

(A)

\[g_2(\tau) - 1 \text{ (a.u.)} \]

\[\text{Lag time (\mu s)} \]

(B)

\[\text{Volume (\%)} \]

\[\text{Hydrodynamic diameter (nm)} \]
Figure S2.

(A) $g_2(\tau)-1$ (a.u.) vs. Lag time (µs)

(B) Volume (%) vs. Hydrodynamic diameter (nm)
Figure S3.

(A)

\[g_2(\gamma^{-1}) \text{ (a.u.)} \]

![Graph showing lag time (µs) vs. NaCl concentration.]

(B)

\[\text{Volume \%} \]

![Graph showing hydrodynamic diameter (nm) vs. NaCl concentration.]

Legend:
- 25 mM NaCl
- 50 mM NaCl
- 100 mM NaCl
- 150 mM NaCl
- 200 mM NaCl
- 250 mM NaCl
Figure S4.

(A)

(B)
Figure S5.

(A)

(B)
Figure S6.

(A)

(B)
Figure S7.

(A)

\[g_2(\theta)^{-1} \text{ (a.u.)} \]

\[\text{Lag time (\mu s)} \]

(B)

\[\text{Volume (\%)} \]

\[\text{Hydrodynamic diameter (nm)} \]

- 100 mM CaCl2
- 150 mM CaCl2
- 200 mM CaCl2
- 250 mM CaCl2
Figure S8.

(A) $g_2 (r) - 1$ (a.u.) vs. Lag time (μs) for 80 C and 90 C.

(B) Volume (%) vs. Hydrodynamic diameter (nm) for 80 C and 90 C.